• Главная
  • Карта сайта

Биология и природа вокруг нас ...

Главное меню

  • На главную
  • Гидросфера и атмосфера Земли
  • Функциональная асимметрия мозга
  • Строение клеток растений
  • Анатомия человека
  • Человек как биологический вид
  • Процесс антропогенеза
  • Естествознание в системе наук

Адаптация к условиям высокогорья

Страница 2

Ключевую роль в индукции эритропоэза, ангиогенеза и гликолиза играет железосодержащий белок HIF-1 (Hypoxia inducible factor), активирующийся при гипоксии. Он усиливает транскрипцию генов эритропоэтина, фактора роста сосудов, ферментов гликолиза, вызывая комплексный ответ на долговременную гипоксию. Разрастание сосудистой сети сердца и головного мозга создает дополнительные резервы для снабжения этих органов кислородом и энергетическими ресурсами. Увеличение емкости сосудистого русла снижает его общее сопротивление. Рост сосудистой сети в легких в сочетании с увеличением диффузионной поверхности легочной ткани обеспечивает возможность повышения газообмена.

Система крови претерпевает комплекс изменений. Увеличение секреции гормонов - эритропоэтинов стимулирует эритропоэз в красном костном мозге, что приводит к увеличению числа эритроцитов, содержания гемоглобина (Hb) и в итоге к возрастанию кислородной емкости крови. Помимо типичного для взрослого организма HbА появляется эмбриональный HbF, обладающий большим сродством к кислороду и способный присоединять его при более низком напряжении кислорода в альвеолярном воздухе. Чем больше доля HbF, тем больше кривая сдвинута влево. Аналогичный сдвиг кривой наблюдается у лам, обитающих в Андах на высоте около 5000 м. Благодаря увеличению активности многих ферментов молодые эритроциты обладают более высоким уровнем энергообмена и повышенной устойчивостью.

Повышается содержание в эритроците 2,3-дифосфоглицерата, способствующего освобождению кислорода из комплекса с гемоглобином в тканях. Увеличение кислородной емкости крови дополняется повышением концентрации в миокарде и скелетных мышцах мышечного белка - миоглобина, способного переносить кислород в зоне более низкого парциального давления, чем гемоглобин.

Увеличение резервной мощности тканей и органов сочетается с возрастанием экономичности их функционирования. Так, на высоте 4350 м у горцев коронарный кровоток и потребление кислорода миокардом на 30% меньше, чем у обитателей равнин на уровне моря при той же работе сердца. Это обусловлено увеличением числа митохондрий на единицу массы миокарда, возрастанием активности митохондриальных ферментов и скорости фосфорилирования и как следствие - большим выходом АТФ на единицу субстрата при одном и том же уровне потребления кислорода. В итоге увеличивается способность сердца к извлечению и использованию кислорода из протекающей крови при его низких концентрациях.

Оптимизация механизмов утилизации кислорода в процессе долговременной адаптации позволяет ослабить нагрузку на транспортные системы. Частота дыхания и сердцебиения снижается, минутный объем сердца уменьшается. На высоте 3800 м ткани горца извлекают 10,2 мл О2 из каждых 100 мл крови против 6,5 мл у молодого здорового жителя равнин. При этом горец обладает большими резервами повышения утилизации кислорода при выполнении мышечной работы и способен выполнить большую нагрузку, обладая большей резервной мощностью сердца и легких.

Вполне логичным с точки зрения оптимизации процессов является увеличение мощности гликолиза в эритроцитах, головном мозге, миокарде и других тканях в процессе длительной адаптации к гипоксии, так как для окисления 1 г углеводов требуется меньше кислорода, чем для окисления такого же количества жиров. Повышается активность ферментов, расщепляющих глюкозу и гликоген, появляются новые изоформы ферментов, более соответствующие анаэробным условиям, увеличиваются запасы гликогена. Опасность сдвига pH при усилении анаэробного гликолиза предотвращается увеличением щелочного резерва крови.

Страницы: 1 2 3

Copyright © 2013 - Все права защищены