• Главная
  • Карта сайта

Биология и природа вокруг нас ...

Главное меню

  • На главную
  • Гидросфера и атмосфера Земли
  • Функциональная асимметрия мозга
  • Строение клеток растений
  • Анатомия человека
  • Человек как биологический вид
  • Процесс антропогенеза
  • Естествознание в системе наук

Строение и функции мембран нейронов

Страница 2

Мембранный транспорт веществ (переход вещества из внеклеточной среды во внутриклеточную либо наоборот) является еще одной важной функцией мембраны. Любой вид транспорта определяется свойствами переносимого вещества - его способностью растворяться в воде, его размерами, химическими свойствами, а также градиентом (разницей) концентрации между наружной и внутренней поверхностью плазматической мембраны. Гидрофобные вещества хорошо проходимы через плазматические мембраны. Поэтому их транспорт определяется преимущественно наличием и направленностью градиента концентрации - вещество движется согласно законам термодинамики из области его высокой концентрации в область, где концентрация этого вещества ниже. Гидрофильные вещества не могут свободно проходить через плазматические мембраны, даже если они имеют небольшие размеры. Для их транспорта необходимы либо специальные частицы - транспортеры, либо специальные механизмы, в основе которых лежит изменение формы клетки. Если перенос вещества происходит с участием транспортной частицы (переносчика), то в этом случае возможны два варианта. Первый вариант - перенос по градиенту концентрации. Такой вид транспорта не требует для своей реализации в данный момент времени затраты энергии (она затрачивается ранее, при создании такого градиента); поэтому его условно называют пассивным транспортом. Второй вариант - перенос вещества против градиента его концентрации. В этом случае необходима затрата свободной энергии (используются энергия, которая освобождается при гидролизе АТФ, т. е. в результате диссоциации этой молекулы на АДФ, и неорганический фосфат). Такой вид транспорта получил название активный транспорт.

Таким образом, можно говорить о наличии внутри плазматической мембраны двух типов переносчиков - пассивных и активных. Процесс транспорта веществ через плазматическую мембрану может регулироваться, поэтому проницаемость для конкретного вещества - величина, изменяемая во времени. Особенно этот принцип важен в отношении ионов натрия, калия, кальция и хлора - в возбудимых клетках имеются специальные механизмы регуляции проницаемости мембраны для указанных ионов, позволяющих менять ее в широких диапазонах, в том числе до полного прекращения транспорта иона. При этом существуют два основных механизма такой регуляции - за счет изменения уровня мембранного потенциала (потенциалзависимый механизм) или за счет активации специфических клеточных рецепторов (рецепторуправляемый механизм).

Различают прямой и опосредованный транспорт. Прямой транспорт осуществляется без участия переносчиков и без затраты энергии. Он идет путем диффузии или фильтрации, т. е. по типу пассивного транспорта. Примером такого вида транспорта является перенос кислорода как жирорастворимого вещества. Опосредованный транспорт во всех случаях совершается с участием переносчика. При этом в одних случаях этот вид транспорта идет без затраты энергии (облегченная диффузия), а в других - с затратой энергии (активный транспорт).

Пассивный транспорт. Различают два его вида - простую диффузию и облегченную диффузию. Механизмом простой диффузии осуществляется перенос мелких жирорастворимых молекул (О2, СО2, и др.). Облеченная диффузия осуществляется через специфические каналы (в том числе специфические ионные каналы) или с участием специфических белков-переносчиков. В том и в другом случае эти структуры являются интегральными мембранными белками, а сам перенос вещества идет без затраты энергии - за счет химического или электрохимического градиента. С помощью белков-переносчиков возбудимые клетки (как и другие клетки) получают из внеклеточной среды. Направленность потока ионов определяется химическим и электрохимическим градиентом. В частности, известно, что в цитоплазме возбудимых клеток концентрация ионов Na+ составляет 14 мМ, а во внеклеточной среде - 140 мМ. Поэтому пассивный поток ионов Na+ по натриевым каналам направлен из внеклеточной среды в цитоплазму. Аналогичная ситуация для потока ионов Са++, так как во внеклеточной среде их концентрация намного больше, чем в цитоплазме. Поток ионов К+ по калиевым каналам направлен, наоборот, из клетки в среду, так как концентрация этих ионов в цитоплазме намного больше, чем во внеклеточной среде (150 мМ против 4 - 5 мМ). Натриевые каналы в условиях покоя (в частности, при мембранном потенциале, равном - 80 мВ) закрыты, но при снижении мембранного потенциала (например, с +80 мВ до +60 мВ) открываются, в результате чего интенсивность натриевого потока, входящего в клетку, возрастает. Однако спустя определенное время (например, 1 - 2 мс, как это наблюдается в нейроне) происходит инактивация натриевых каналов. Следствием этого процесса является снижение (почти до нуля) входящего в клетку потока ионов натрия. Натриевые каналы играют исключительно важную роль в деятельности нейронов, так как обеспечивают начальный компонент потенциала действия, т. е. его фазу деполяризации.

Страницы: 1 2 3

Copyright © 2013 - Все права защищены