• Главная
  • Карта сайта

Биология и природа вокруг нас ...

Главное меню

  • На главную
  • Гидросфера и атмосфера Земли
  • Функциональная асимметрия мозга
  • Строение клеток растений
  • Анатомия человека
  • Человек как биологический вид
  • Процесс антропогенеза
  • Естествознание в системе наук

Механические свойства ткани кровеносных сосудов

Прочностные и деформационные свойства стенок кровеносных сосудов и изменение этих свойств (с возрастом) имеет большое значение для медицины.

Кровеносные сосуды состоять из трех концентрических слоёв:

внутренний - интима; средний - средняя сосудистая оболочка; наружный - внешняя сосудистая оболочка.

Механические свойства кровеносных сосудов обуславливаются, главным образом, свойствами средней сосудистой оболочки, состоящий из коллагена, эластина и гладких мышечных волокон. Представим допускаемые деформации этих элементов:

Элемент

Деформация ε в %

Модуль Юнга (МПа)

Эластин Коллаген Мышечное волокно (при сокращении) Кровеносный сосуд

200-300 до 10 20 5-50

0,1 - 0,6 10 - 100 0,01 - 0,1 0,06 - 0,7

Следует отметить, что гладкие мышечные клетки могут менять свою длину (сокращаться) под действием нервных или химических стимуляторов. Гладкая мышца осуществляет активное поведение кровеносных сосудов, так как в результате её сокращения меняется диаметр кровеносного сосуда и механические свойства сосудистой стенки в целом.

Таким образом, достигается оптимальное распределение и регулирование кровяного потока.

Содержание трёх основных компонентов сосудистой ткани меняется для различных мест стенки. Отношение эластина к коллагену в сосудах ближе к сердцу равно 2:1, но оно убывает с удалением от него и в бедренной артерии оно равно 1:2. С удалением от сердца увеличивается содержание гладких мышечных волокон, и уже в артериоллах они становятся основной составляющей сосудистой ткани.

Установлено, что сосудистая ткань является практически несжимаемой. Кровеносные сосуды обладают криволинейной ортотропией (т.е. их механические свойства в радиальном, осевом и кольцевом направлениях существенно различны).

Механическое поведение сосудов усложняется ещё и тем, что в организме они находятся под влиянием окружающих тканей, растянуты в продольном направлении и их деформации в этом направлении ограничены. В сосудах наблюдаются значительные отклонения механических характеристик для отдельных индивидов от установленных средних значений.

Напряжение, возникающее при деформации в стенке кровеносного сосуда определяется уравнением Ламе.

Вывод уравнения Ламе.

Возьмём часть кровеносного сосуда длиной l и толщиной стенки h.

Представим стенки сосуда вдоль и поперёк:

Две половины цилиндрического сосуда взаимодействуют между собой по сечениям стенок сосуда. Общая площадь сечения взаимодействия будет: 2hl, тогда сила взаимодействия двух половинок:

Эта сила уравновешивается силами давления крови изнутри:

Таким образом, имеем: , откуда

- уравнение Ламе

Таким образом, напряжение, возникающее в стенках кровеносных сосудов зависит от величины давления крови, внутреннего радиуса и от толщины стенок сосуда.

Copyright © 2013 - Все права защищены