• Главная
  • Карта сайта

Биология и природа вокруг нас ...

Главное меню

  • На главную
  • Гидросфера и атмосфера Земли
  • Функциональная асимметрия мозга
  • Строение клеток растений
  • Анатомия человека
  • Человек как биологический вид
  • Процесс антропогенеза
  • Естествознание в системе наук

Биохимические изменения в клетке

Страница 2

Разрывы скелета ДНК частично восстанавливаются самостоятельно, частично с помощью системы ферментативной информации. Репарация не всегда заканчивается восстановлением исходной молекулы. Вместо воссоединения разорванной связи может возникнуть связь между свободными концами двух противоположных нитей молекулы ДНК, между свободными концами в местах разных разрывов одной и той же нити ДНК и даже между свободными концами разных молекул ДНК. Такое разнообразие новых связей является следствием того, что нити ДНК в ядре упакованы весьма плотно. Неправильное воссоединение разрывов приводит к возникновению хромосомных перестроек. Разрыв молекулы ДНК и окружающих ее белков при неправильном воссоединении приводит к образованию ДНК-белковых сшивок.

Неверная репликация оснований, а также их химическая модификация ведет к еще одному дефекту молекулы - появлению так называемых неспаренных оснований. В молекуле ДНК в норме существует только две пары комплементарных оснований - аденин - тимин и гуанин - цитозин. Замена одного из оснований каждой пары ведет к изменению генетического кода. Во время репликации ДНК в синтезируемой цепи вместо комплементарного гуанину цитозина напротив 8-оксогуанина будет выставлен аденин. При синтезе информационной РНК неверное основание приведет к неправильной кодировке и последующему включению в белковую молекулу ошибочного аминокислотного остатка. Помимо этого, некомплементарное основание меняет геометрию молекулы ДНК.

Некомплементарные основания образуются не только в результате облучения, но возникают и спонтанно как дефекты сложного процесса репликации ДНК. Поэтому системы репарации ДНК всегда активно работают в клетке, вне какой-либо связи с воздействием ионизирующей радиации. Однако облучение увеличивает как общее количество дефектов, так и создает поражения, которые по количеству на единицу длины молекулы превосходят повреждения, возникающие в нормальных условиях.

При воздействии редкоионизирующего излучения в дозе 2 Гр, вызывающем гибель от 10 до 90% клеток разных тканей человека, в ДНК одной клетки образуется около 2000 однонитевых и 80 двунитевых разрывов, повреждается 1000 оснований и формируется 300 сшивок с белком. Именно эти поражения и лежат в основе радиационной гибели клетки, длительного нарушения эффективности деления ее потомков и злокачественного перерождения, а в случае воздействия на половые клетки - и генетических последствий облучения родителей для потомства.

В основе развития лучевого повреждения лежат особые свойства поражающего действия излучений. Это можно представить следующим образом: ядерные излучения проникают в глубину клетки и реализуют повреждение за счет инактивации особенно важных для жизнедеятельности клетки биохимических систем. Следовательно, энергия ядерных излучений избирательно воздействует на определенные системы и не распределяется равномерно на весь объем клетки.

Путем многочисленных экспериментальных исследований было установлено, что чаще всего лучевое поражение наступает при инактивации сульфгидрильных групп ферментов, которые участвуют в синтезе нуклеиновых кислот и обуславливают процессы ядерного деления. В результате процесс деления либо прекращается, либо происходит патологическое изменение его с возникновением неполноценных дочерних клеток. В тех случаях, когда лучевая ионизация не затронула важные биохимические соединения, повреждение не реализуется и жизнедеятельность клетки практически не нарушается. Предполагают, что реализация повреждающего действия происходит тогда, когда лучевой ионизации и связанным с ней химическим изменениям подвергается 0,1-1 миллиард молекул.

Страницы: 1 2 

Copyright © 2013 - Все права защищены